

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Developing a Spatial Risk Profile: Assessing Building Vulnerability to Extreme Coastal Inundation Hazard

by Dr. Lauren Williams

15 April 2021

Supervisor: Dr. Melanie Lück-Vogel

Co-supervisor: Dr. Robyn Pharoah

Background

Coastal inundation is regarded as one of the most dangerous, harmful and destructive natural hazards (Douben 2006; Balica 2012; Williams & Lück-Vogel 2020).

	Hazard risk	total	%	NC	WC	EC_urb	EC_trad	KZN_urb	KZN_trad
2011	very high	15	0.002	2	13	-	-	-	-
	high	738	0.1	102	585	33	4	14	-
	medium	17 044	2.8	467	14 377	1 155	30	989	26
	low	106 278	17.2	1 259	73 460	15 700	456	13 464	1 939
	very low	494 308	79.9	1 476	353 103	52 343	758	58 116	28 512
	TOTAL	618 383	100	3 306	441 538	69 231	1 248	72 583	30 477
				_					
	Hazard risk	TOTAL	%	NC	WC	EC_urb	EC_trad	KZN_urb	KZN_trad
9	Very high	55	0.01	1	52	1	-	1	-
201	high	1 158	0.1	100	983	60	4	11	-
	medium	23 184	2.2	479	19 230	1 969	87	1 401	18
	low	161 998	15.3	1 294	114 539	26 524	759	16 298	2 584
	very low	873 550	82.4	1 511	655 959	103 347	1 466	<mark>69 435</mark>	41 832
	TOTAL	1 050 045	100	2 205	700 702	121 001	2 216	07 146	44 424

Supermoon event (2016), coinciding with a spring tide

Available solutions

National Oceans and Coastal Information Management System (OCIMS)

<u>www.ocims.gov.za</u>

To make information accessible to inform decisions

Ф

p a

Ð

С

e d

≥

k n o

u r

y o

https://www.ocims.gov.za/coastal-flood-hazard-tool/

Disadvantages of the 10 Bathtub model: Simplistic model Hydrological disconnect 8 Overestimation of inundated areas Excludes tidal and 6 atmospheric forces 3m

Φ

ສ 0

Φ б

Q

Φ

≥

0

 \mathbf{X}

Π

0

>

Available solutions: Numerical modelling

Disadvantages:

- Data hungry
- Computationally expensive
- Too coarse for local applications
- Specialised

Numerical modelling software:

CSIR (2016)

http://marine.weathersa.co.za/

Available solutions

Comprehensive Spatial Risk Profiles

Disadvantage:

- Do not adequately capture localised events
- Coastal processes are lost

Map credit: Western Cape Government: Disaster Management

There is a need for:

- An inundation model that is not too sophisticated, nor too simplistic and able to provide information at a local level
- 2. A locally relevant building vulnerability assessment framework
- 3. A local level spatial risk profile for building vulnerability to coastal inundation hazard

Stakeholder engagements

• Written survey: coastal and disaster management officials (40 respondents)

• Semistructured interviews and consultations: technical experts (16 respondents)

Coastal inundation model development

Co-development Process

 Inundation hazard limits

Building hazard exposure

Vulnerability assessment

 Indicator development

Building
 assessments

• Field work

Spatial Risk Profile

Scaling

• Weighting

Technical expertise consulted

Access to technology:

- GIS is the most widely used and accessible technology
- All consulted institutions are using ESRI's ArcGIS software

Access to technical expertise:

- Dedicated GIS expertise is mostly available within institutions
- Specialised services e.g. hydrodynamic modelling are outsourced on a project basis

Coastal inundation risk assessment requirements:

- easily repeatable and structured;
- does not require advanced specialised expertise;
- implementable over a large area;
- quickly executable; and
- able to be undertaken without the need for sophisticated technologies e.g. high-performance computing. 14

Question	Input data	Derivatives
How to ensure hydrological connectivity to the coast?	Vector coastline "water source"	Coastline
How to include water	LiDAR derived 1m resolution DSM	Surface structures;
movement influencers		Elevation;
		Slope; and
		Aspect.
How much water will cause inundation?	User defined inundation water level	Inundation water level
How to include bottom friction in a GIS environment?	Surface roughness coefficient (FEMA 2007)	Surface roughness

Þ

eBTM Tool Development

Packaging the model into a user friendly plug & play solution for ArcGIS

01 Basic Static Sea Level Rise (Simple Bathtub Model (sBTM))
 02 Coastal Inundation (Enhanced Bathtub Model (eBTM))
 03 Calculate Inundation Area from eBTM output

eBTM Tool Development

User friendly plug & play solution for ArcGIS developed

02 Coastal Inundation (Enhanced Bathtub Model (eBTM)) V10.3

Vector I	02 Coastal Inundation (Enhanced Bathtub Model (eBTM)) V10.3
• Digital Elevation Model (DEM)	The coastal inundation tool is an enhancement to the simple Bathtub Model (sBTM).
• Inundation Water Level Scalar	The model is based on static water levels (i.e. no atmospheric or tidal forcing). Unlike the sBTM, this enhanced Bathtub Model (eBTM) considers
Scalar	hydrological connectivity to the coast, beach slope and surface roughness.
Raster	The model produces an inundation depth raster relative to the input DEM.
eBTM Inundation %scratchGDB%\grid14 Raster	The eBTM was developed in ArcMap 10.3.1 and requires the Spatial Analyst extension. There may be compatibility issues with other versions of ArcGIS, so the python script is also provided.
	The use of the model should be referenced as:
<	Williams, L. L. (2019) "Coastal Inundation (Enhanced Bathtub Model (eBTM))." Department of Environment, Forestry and Fisheries. doi: 10.15493/DEFF.10000002.
OK Cancel Environments << Hide Help	Tool Help

 \times

Model scenarios and parameters

Water levels

Scenario number	Return period	Storm surge (m)	Spring tide water level (m)	IPCC AR5 Sea level rise	Hazaro water	d scenario levels (m)
				projection (m)		
1	Once per 100 years	0.84	0.95	None	1.79	
2	Once per 100 years	0.84	0.95	0.38	2.17	
3	Once per 100 years	0.84	0.95	0.82	2.61	

30 August 2008 storm saw a maximum tide water level of 2.3m (SANHO 2008)

Roughness coefficient

FEMA 2007

Roughness Coefficient	Description of surface
1	Sand; smooth rock, concrete, asphalt, wood, fibreglass
0.95	Tightly set paving blocks with little relief
0.9	Turf, closely set stone, slabs, blocks
0.85	Paving blocks with sizable permeability or relief
0.8	Steps; one stone layer over impermeable base; stones set in cement
0.7	Coarse gravel; gabions filled with stone
0.65	Rounded stones, or stones over impermeable base
0.6	Randomly placed stones, two thick on permeable base; common riprap installation
0.5	Cast-concrete armour units; cubes, dolos, quadripods, tetrapods, tribars, etc.

>

Sensitivity testing

_ _

- Comparison between sBTM vs. eBTM
- The eBTM model's response to a DTM vs. DSM under the same input parameters;
- Varying the following parameters:
 - DSM resolutions i.e. 1m, 5m and 10m DSMs
 - Beach slope; and
 - Surface roughness

Yellow:

- ► sBTM
- 1m DTM
- Water level = 2.61m

Blue:

- eBTM
- 1m DSM
- Water level = 2.61m

Φ ສ 0 Φ g О w l e 0 $\boldsymbol{\prec}$ Π 0 \geq

Test Parameters	Outcome
Study site	Strand
1m resolution DSM	Model run time = 50 mins, 4 secs;
5m resolution DSM	Model run time = 1 min, 37 secs;
10m resolution DSM	Model run time = $.37.88$ secs

Test 4: Varying Beach Slope

- Strand has a gentle beach slope
- What about steeper beaches e.g. Fish Hoek's dune?

Test 4: Varying Beach Slope

- What about areas with sea walls e.g. Sea Point?
- Input water level was 5m, the approximate height of the sea wall

Test 5: Roughness Coefficient

- 1m DSM
- Water level: 2.6m
- RC values based on FEMA (2007)
- RC is between 0 (rough) and 1 (smooth)
 - RC = 1 (blue)
 - RC = 0.5 (orange)

eBTM Validation

- Data points from 2008 storm
- Water level = 2.3m

partner

knowledge

u r

0

 \geq

Inundation Hazard Results

θΓ

partn

g e

σ

Φ

k n o w

n o

>

<u> </u>
Φ
_ب
<u> </u>
ອ
Q
Ф
g
q
Φ
_
\geq
0
×
_
<u> </u>
Π
0
\geq

Inundation depth	Hazard exposure score	Fish Hoek	Strand
0 m	0 (not exposed)	202	524
0.1 m to 0.3 m	1 (low)	3	96
0.31 m to 0.6 m	2 (moderate)	1	59
> 0.61 m	3 (high)	0	37

FEMA (2013)

Building vulnerability assessment

- Indicators developed through consultation
 - Indicators are hazard specific
 - Scoring mechanism (1 3)
 - Each building assessed individually

Vulnerability Score = ((P1 + P2 + P3 + P4 + P5) * 0.6) + ((01 + 02 + 03) * 0.4)

Vulnerability	Fish Hoek	Strand
Slightly vulnerable	13	254
Moderately vulnerable	163	354
Highly vulnerable	30	108

Conventional risk equation:

- Adaptation includes:
 - Scaling presenting data according to a particular scale (in the context of this thesis: dividing a continuous data range into discrete classes)
 - Weighting introducing an adjustment to the weight of individual input data and is applied to accommodate specific circumstances.

Modified risk equation:

$$Risk = w_H H * w_{HE} HE * w_v V$$

Weightings:

$$w_H = 1$$

 $w_{HE} = 0.75$

 $w_V = 2$

Spatial Risk Profile = Inundation Hazard * Building Hazard Exposure * Building Vulnerability

Data considerations

Dependency on high resolution DEMs

Preferred for coastal applications - resolution test

Outdated data

LiDAR is expensive, but necessary, especially where the landscape has changed

Contributions

- Contribution to knowledge in the GIS application, disaster management and coastal management fields.
- Individual assessment of risk components (i.e. hazard, hazard exposure and vulnerability) at a locally relevant scale.
 - Improved GIS based coastal inundation approach.
- 2. Framework for building vulnerability developed.
 - Cross-disciplinary and co-developed risk assessment approach.
- 4. Providing a method for generating geospatial risk information at levels relevant for local management.
- Tool to empower local municipalities, disaster management and coastal practitioners to conduct local inundation assessments by packaging the eBTM model in a GUI tool.

Current work and future opportunities

- Current work:
 - The eBTM is currently being used in the Department of Forestry and Fisheries and the Environment, projects, including:
 - Coastal Climate Change Vulnerability Assessment Project
 - Updating Coastal Flood Hazard Decision Support Tool on OCIMS
 - The ArcCoastTools toolbox was requested by the Western Cape Government for use in a climate change vulnerability assessment project

Future opportunities:

- Improvements to the eBTM to incorporate a surface roughness raster (paper submitted)
- Promote data capture during inundation events, capturing inundation limits to assist in model validation
- Develop the eBTM using open source solutions for wider use
- Couple eBTM with more sophisticated models for improved scenario based outputs

eBTM development and testing:

Williams, L.L. & Lück-Vogel, M. 2020. Comparative assessment of the GIS based Bathtub Model and an Enhanced Bathtub Model for coastal inundation. Journal of Coastal Conservation 24, 23. [online]. Available from: <u>https://doi.org/10.1007/s11852-020-00735-x</u>

ArcPy script:

Williams, L. L. 2019. Coastal Inundation (Enhanced Bathtub Model (eBTM)). Department of Environment, Forestry and Fisheries. <u>https://doi.org/10.15493/DEFF.10000002</u>

ArcCoastTools

Williams, L. L. 2019. ArcCoastTools. Department of Environment, Forestry and Fisheries. <u>https://doi.org/10.15493/DEFF.10000001</u>

Guidelines for Coastal LiDAR:

Lück-Vogel, M., Macon, C., Williams, L.L. 2018. Guidelines for Coastal Lidar. PositionIT, 21 May 2018, EE Publishers. Online: <u>http://www.ee.co.za/article/guidelines-for-coastal-lidar.html</u>

National Guideline Towards the Establishment of Coastal Management Lines:

Department of Environmental Affairs. 2017. National Guideline Towards the Establishment of Coastal Management Lines. Centre for Environmental Rights. Online: <u>https://cer.org.za/wpcontent/uploads/2009/12/National-guideline-towards-the-establishment-of-coastal-managementlines.pdf</u>

Thank You

